I’ve capabilities

```
f= 1/eight E^(-I [Phi]) (2 E^(
I [Phi]) (1 + x^2 + [Lambda]^2 +
2 x [Lambda] Cos[[Theta]] Sin[t]^2) +
2 x [Lambda] Cos[t] Sin[[Theta]] +
2 E^(2 I [Phi])
x [Lambda] Cos[
t] Sin[[Theta]] - [Sqrt](E^(
2 I [Phi]) (-(x^4 -
2 x^2 (-1 + [Lambda]^2) + (1 + [Lambda]^2)^2) Sin[
2 t]^2 +
4 (1 + x^2 + [Lambda]^2 +
2 x [Lambda] (Cos[[Theta]] Sin[t]^2 +
Cos[t] Cos[[Phi]] Sin[[Theta]]))^2)))
```

and

```
g=1/eight E^(-I [Phi]) (2 E^(
I [Phi]) (1 + x^2 + [Lambda]^2 +
2 x [Lambda] Cos[[Theta]] Sin[t]^2) +
2 x [Lambda] Cos[t] Sin[[Theta]] +
2 E^(2 I [Phi])
x [Lambda] Cos[
t] Sin[[Theta]] + [Sqrt](E^(
2 I [Phi]) (-(x^4 -
2 x^2 (-1 + [Lambda]^2) + (1 + [Lambda]^2)^2) Sin[
2 t]^2 +
4 (1 + x^2 + [Lambda]^2 +
2 x [Lambda] (Cos[[Theta]] Sin[t]^2 +
Cos[t] Cos[[Phi]] Sin[[Theta]]))^2)))
```

I attempted to combine $-fLog[2,f]-gLog[2,g]$, with respect to $theta$ and $phi$ such that $zero le theta le pi$ and $zero le phi le 2 pi$. Nonetheless, it doesn’t present the reply, reasonably it offers the expressions again with integral indicators $int_theta int_phi$.

Kindly assist to resolve the difficulty. Thanks.